2023考研数学(二)大纲原文 高等数学部分

2023考研数学二大纲已公布,考研大纲是规定全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。考研考研小编整理了相关内容,希望各位考生在复习过程充分利用考研大纲资料。

>>>考研大纲直播ing >>>9月16日~18日–2022考研新大纲解析峰会直播Live

>>>各研招院校2023年各专业硕士招生考试自命题考研大纲

-高等数学-

一、函数、极限、连续

【考试内容】

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

【考试要求】

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及

隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学

【考试内容】

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径

【考试要求】

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.

9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学

【考试内容】

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

【考试要求】

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

5.了解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.

四、多元函数微积分学

【考试内容】

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算

【考试要求】

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

5.理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程

【考试内容】

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用

【考试要求】

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.

4.理解线性微分方程解的性质及解的结构.

5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

7.会用微分方程解决一些简单的应用问题.

扫一扫小程序查看》》2023考研统考大纲各科目变化新增点分析!

更多科目专业考研大纲原文及解读尽在其中!

相关推荐:

考研各地区-各专业培训辅导介绍-申请免费试听

各省市研招院校2023年硕士研究生招生简章汇总

各省市考研院校2023年硕士研究生招生专业目录汇总

各省市考研院校2023年硕士研究生招生参考书目汇总

标签

发表评论

京ICP备18012533号-225
Warning: error_log(/apps/wwwroot/www.zhangshituina.com/wp-content/plugins/spider-analyser/#log/log-1515.txt): failed to open stream: Permission denied in /apps/wwwroot/www.zhangshituina.com/wp-content/plugins/spider-analyser/spider.class.php on line 2966